Hypothalamic AMP-activated protein kinase activation with AICAR amplifies counterregulatory responses to hypoglycemia in a rodent model of type 1 diabetes.
نویسندگان
چکیده
In nondiabetic rodents, AMP-activated protein kinase (AMPK) plays a role in the glucose-sensing mechanism used by the ventromedial hypothalamus (VMH), a key brain region involved in the detection of hypoglycemia. However, AMPK is regulated by both hyper- and hypoglycemia, so whether AMPK plays a similar role in type 1 diabetes (T1DM) is unknown. To address this issue, we used four groups of chronically catheterized male diabetic BB rats, a rodent model of autoimmune T1DM with established insulin-requiring diabetes (40 +/- 4 pmol/l basal c-peptide). Two groups were subjected to 3 days of recurrent hypoglycemia (RH), while the other two groups were kept hyperglycemic [chronic hyperglycemia (CH)]. All groups subsequently underwent hyperinsulinemic hypoglycemic clamp studies on day 4 in conjunction with VMH microinjection with either saline (control) or AICAR (5-aminoimidazole-4-carboxamide) to activate AMPK. Compared with controls, local VMH application of AICAR during hypoglycemia amplified both glucagon [means +/- SE, area under the curve over time (AUC/t) 144 +/- 43 vs. 50 +/- 11 ng.l(-1).min(-1); P < 0.05] and epinephrine [4.27 +/- 0.96 vs. 1.06 +/- 0.26 nmol.l(-1).min(-1); P < 0.05] responses in RH-BB rats, and amplified the glucagon [151 +/- 22 vs. 85 +/- 22 ng.l(-1).min(-1); P < 0.05] response in CH-BB rats. We conclude that VMH AMPK also plays a role in glucose-sensing during hypoglycemia in a rodent model of T1DM. Moreover, our data suggest that it may be possible to partially restore the hypoglycemia-specific glucagon secretory defect characteristic of T1DM through manipulation of VMH AMPK.
منابع مشابه
Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation.
Defective counterregulatory responses (CRRs) to hypoglycemia are associated with a marked increase in the risk of severe hypoglycemia. The mechanisms leading to the development of defective CRRs remain largely unknown, although they are associated with antecedent hypoglycemia. Activation of AMP-activated protein kinase (AMPK) in the ventromedial hypothalamus (VMH) amplifies the counterregulator...
متن کاملKey role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia.
OBJECTIVE To examine in vivo in a rodent model the potential role of AMP-activated protein kinase (AMPK) within the ventromedial hypothalamus (VMH) in glucose sensing during hypoglycemia. RESEARCH DESIGN AND METHODS Using gene silencing technology to selectively downregulate AMPK in the VMH, a key hypothalamic glucose-sensing region, we demonstrate a key role for AMPK in the detection of hypo...
متن کاملPotential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus.
The mechanisms by which specialized glucose-sensing neurons within the hypothalamus are able to detect a falling blood glucose remain largely unknown but may be linked to some gauge of neuronal energy status. We sought to test the hypothesis that AMP-activated protein kinase (AMPK), an intracellular kinase purported to act as a fuel sensor, plays a role in hypoglycemia sensing in the ventromedi...
متن کاملActivation of ATP-sensitive K+ channels in the ventromedial hypothalamus amplifies counterregulatory hormone responses to hypoglycemia in normal and recurrently hypoglycemic rats.
The mechanism(s) by which glucosensing neurons detect fluctuations in glucose remains largely unknown. In the pancreatic beta-cell, ATP-sensitive K+ channels (K ATP channels) play a key role in glucosensing by providing a link between neuronal metabolism and membrane potential. The present study was designed to determine in vivo whether the pharmacological opening of ventromedial hypothalamic K...
متن کاملCa2+/Calmodulin-Dependent Protein Kinase Kinase Is Not Involved in Hypothalamic AMP-Activated Protein Kinase Activation by Neuroglucopenia
Hypoglycemia and neuroglucopenia stimulate AMP-activated protein kinase (AMPK) activity in the hypothalamus and this plays an important role in the counterregulatory responses, i.e. increased food intake and secretion of glucagon, corticosterone and catecholamines. Several upstream kinases that activate AMPK have been identified including Ca(2+)/Calmodulin-dependent protein kinase kinase (CaMKK...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 296 6 شماره
صفحات -
تاریخ انتشار 2009